
Timescales of Galaxy Mergers
and Satellite Stripping

Abstract

In this work we investigate the merging times and rates of mass accretion in binary mergers
between galaxies that consist of a dark matter halo and a stellar bulge. We present our own
definition of the merging time and test the formula presented in [Boylan-Kolchin et al., 2008]
against the results of 15 N-body simulations. In particular we examine the accuracy of the formula
when the merging time is measured from when the satellite is separated from the host by a radius
r < rvir. In addition we analyse the rates of dark matter and stellar accretion to the host galaxy.
We find that the predictions from [Boylan-Kolchin et al., 2008] are systematically longer than our
measured timescales and that the difference is due to the sensitivity of the definitions of the merging
time to the mass loss of the satellite. We conclude that, in spite of the disagreement with our
measurements, the formula in [Boylan-Kolchin et al., 2008] is consistent for r < rvir. From our
analysis of mass accretion we have two main results. Firstly, stellar mass is accreted slowly (by
≈ 10% or less) until the halo of the satellite is diminished by ≈ 90%, after which it is accreted
quickly. Secondly, the rate of stellar accretion after the halo is stripped by ≈ 90% depends on the
initial mass and trajectory of the satellite. We hope that our work will be useful to semi-analytic
models of structure formation and to observations of merging pairs.

Bryn Elesedy
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1 INTRODUCTION

1 Introduction

It is a commonly held belief that the large scale structure of the Universe, including galaxies,

formed hierachically from the coalescence of smaller substructures. At very early times, about

t ∼ 10−36 seconds after the Big Bang, the Universe was so small that quantum effects were rel-

evant to its gross structure and lead to perturbations in its density field. Rapid inflation then

dispersed the perturbations into causally disconnected regions of spacetime. Initially the gravita-

tionally bound perturbations grew in extent with the expansion of the universe. However, when

they reached δρ/ρ ∼ 1 they began to collapse under their own self-gravity. The popular ΛCDM

paradigm asserts that each of these initial perturbations contains both baryonic and dark matter,

roughly in their cosmic proportions. From these over-densities, dark matter collects and collapses

to form halos, while cool gas condenses and collapses violently to form stars — this is the genesis of

galaxies as we know them [Mo and White, 2010a]. These early progenitor galaxies then clustered

and mergered hierachically to form ever larger structures, with the remnants that we see today

bearing the scars of their past (e.g. [White and Rees, 1978] and [Efstathiou and Silk, 1983]). We

call this process of multiple halos or galaxies interacting to form a larger body a merger and,

of particular relevance to this work, we speak of a binary merger if the event involves only two

progenitors. Henceforth, all references to a merger events are to binary mergers only. We will call

the larger of the progenitors the host and the smaller the satellite. If the satellite is of similar size

to the host (Msat/Mhost > 0.3), then we call the event a major merger, otherwise we name the

event a minor merger.1

The primary physical process by which the merging of dark matter halos and galaxies occurs is

dynamical friction. Dynamical friction is a purely gravitational, collisionless interaction between

a mass and a diffuse body of particles.2 In the context of galaxy mergers it manifests itself as

follows: the satellite galaxy travels through the host, attracting the constituents of the host in a

direction perpendicular to its trajectory. As the satellite is moving relative to the host, this creates

an asymmetric distribution of host particles along the trajectory of the satellite, forming a wake.

The wake then exerts a gravitational force on the satellite, reducing its velocity and causing its

orbit to decay towards the centre of the host. As the satellite’s orbit decays, gravitational tidal

forces cause its mass to be stripped and ultimately the satellite is subsumed by the host.

Given that galaxies constitute an abundant and fundamental component of the structure of the

Universe, it is clear that knowledge of merger events between galaxies and dark matter halos is

pertinent to our understanding of the cosmos. Moreover, as one would imagine, the merger history

of a galaxy is critical to its properties. Mergers can trigger intense nuclear reactions and star

1The latter of these is more common. See, for instance, [Bertone and Conselice, 2009].
2In this setting a star (or a bound cluster stars) would be considered a particle.
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1 INTRODUCTION

formation via the concentration of gas and can even completely transform the morphology of the

galaxy, i.e. from spiral to elliptical or the emergence of tidal tails (e.g. [Toomre and Toomre, 1972]

and [Toomre, 1977]) [Mihos, 2000]. Indeed it is thought that a fair fraction of ellipticals have

formed from mergers [Barnes and Hernquist, 1992]. In turn, an understanding of the timescale of

a merging process and the rate of mass accretion is important to cosmological models, especially

semi-analytic models of structure formation that depend on a specified merger or accretion rate.

Galaxy mergers happen over a time period much greater than the career of even the most persistent

astronomer, so observations must be made by piecing together the snippets of merging processes

that we see into a coherent scheme. Accurate knowledge of the timescale of mergers can therefore

be critical to observations. The merging time formula proposed in [Boylan-Kolchin et al., 2008] is

designed to provide estimates of merging timescales. The contribution of this work is an exami-

nation of the correctness of the formula and of the rate at which mass is accreted to the host. In

particular it will give some insight into the accuracy of the formula when applied part way through

a merger event.
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2 PREVIOUS WORK ON MERGING TIMES

2 Previous work on merging times

Expressions for galaxy merging times have classically been based upon considerations of dynamical

friction.3 This is intuitive, as dynamical friction is the process by which the orbit of the satellite

decays. To incorporate this into models of galaxy mergers, calculations use the dynamical friction

time tdf — the time taken for the satellite to lose all of its orbital angular momentum4 to dynamical

friction, i.e. the time taken for the orbit of the satellite to decay completely. In turn, calculations

of tdf are generally based on the Chandrasekhar dynamical friction formula [Chandrasekhar, 1943]

for a point mass M moving through an infinite, homogeneous sea of particles of mass m

dvM
dt

= −16π2 lnΛG2m(M +m)
1

v3
M

∫ vM

0

f(vM)v2
M dvM vM (2.1)

where vM is the velocity of the point mass, f(vm) is the isotripic velocity distribution of the

particles and lnΛ is the ever problematic Coulomb logarithm (taken to be constant) (for details,

see [Binney and Tremaine, 1987]). To arrive at an expression for tdf from this prescription one

typically makes some assumptions. For a point satellite of mass MS � m on a circular orbit in a

spherical, singular isothermal host that has a Maxwellian velocity distribution we arrive at

tdf =
1.17

lnΛ

r2
i Vc

GMS

, (2.2)

where G is the gravitational constant, ri is the initial radius from the centre of the host to the

satellite, Vc is the circular velocity of the host and the Coulomb logarithm is lnΛ = ln
(
Mhost

MS

)
,

with Mhost the mass of the host [Mo and White, 2010b].

However, there are problems with this method. Firstly, we are interested in the dynamical fric-

tion experienced by an extended body rather than a point mass, to which (2.1) is not directly

applicable. This issue is addressed in [White, 1976] where, to incorporate the satellite as a rigid

body, a modification is made to the velocity of the satellite in terms of the impact parameter of its

encounters with host particles that gives a corresponding modification of the Coulomb logarithm

(see [Mo and White, 2010b]). In spite of such modifications there are still inaccuracies in the rigid

body approximation. It is shown in [Fujii et al., 2006] that the internal degrees of freedom of the

satellite are significant to its orbital decay via tidal stripping. In particular, stripped material that

resides in the wake of the satellite exerts drag and stripped material that remains close to the

satellite enhances the wake. To clarify the second effect, more material is drawn into the wake

3There are groups that track halos in cosmological simulations and measure merging times. They calculate the
time taken for two halos of a given separation to coalesce into a larger structure. This is subtly different from what
we are interested in — the time taken for orbital decay of a satellite that is at the virial radius of the host — so
will not be covered here.

4Unless stated otherwise, orbital angular momentum of the satellite is relative to the centre of mass of the host.
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2 PREVIOUS WORK ON MERGING TIMES

than would be drawn by the bound mass of the satellite.

Attempts have been made to rescue merging time estimates based on (2.2) by fitting a similar

expression to numerical simulations. For instance, [Navarro et al., 1995] performed simulations

of dark matter halos of singular isothermal sphere density distribution with gaseous cores (not

including star formation). To their simulations they fitted the formula

Tdf =
1

2

f(η)

GClnΛ

Vcr
2
c

Msat

(2.3)

where η is orbital circularity, rc(E) is the radius of the circular orbit with the same orbital energy

as the satellite, Msat is the mass of the satellite and C ≈ 0.43 is constant. They found that

f(η) = η0.78 is in good agreement with their data for η > 0.02. In contrast, [Jiang et al., 2008]

found a weaker dependence on orbital circularity f(η) = 0.94η0.60 + 0.60 for similar N-body/hydro

simulations (albeit including star formation) and arrived at the formula

Tmerge =
0.90η0.60 + 0.60

2C

Mhost/Msat

ln(1 +Mhost/Msat)

√
rvirrc
Vc

. (2.4)

where rvirial is the virial radius of the host and a choice of Λ = 1+Mhost/Msat. They cite imprecisions

in the Coulomb logarithm as a key source of discrepancy with [Navarro et al., 1995].

In a slightly different vein, [Boylan-Kolchin et al., 2008] use the fitting formula

τmerge

τdyn

= A
(Mhost/Msat)

b

ln(1 +Mhost/Msat)
exp

(
c

j

jc(E)

) (
rc(E)

rvir

)d
(2.5)

where τdyn = rvir/Vc(rvir) is the dynamical time of the satellite at the virial radius of the host and

j is the specific orbital angular momentum of the satellite relative to the host’s centre of mass.

Note that this is a much stronger dependence on the orbital circularity η = j/jc(E) than above.

They fit (2.5) to simulations of dry mergers (no gas) between [Hernquist, 1990] profile dark matter

halos and find A = 0.216, b = 1.3, c = 1.9 and d = 1.0. Further, the formula (2.5) is tested

against simulations that include stellar bulges and a ≈ 10% reduction to τmerge is suggested for

these systems. This report will extend upon the work of [Boylan-Kolchin et al., 2008].
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3 METHODS

3 Methods

3.1 Simulations

3.1.1 The set up

We ran 15 gravitational N-body simulations to test

τmerge

τdyn

= 0.216
(Mhost/Msat)

1.3

ln(1 +Mhost/Msat)
exp

(
1.9

j

jc(E)

)
rc(E)

rvir

(3.1)

against dry, binary merger systems of galaxies that include a baryonic component, for a variety

of satellite to host mass ratios and initial trajectories.5 Henceforth we employ a 10% reduction

of (3.1) to account for the baryonic component, as advised in [Boylan-Kolchin et al., 2008]. Gas

or star formation are not considered in this work and our simulated mergers consist solely of

gravitational interactions. Relativistic effects and the Ricci scalar are negligible for the particles

in our simulations, so the dynamics of the system are governed entirely by Newtonian gravity.

Moreover, our analysis of mergers is purely numerical, with the relevant physical processes such

as dynamical friction and tidal stripping arising organically from gravitational interactions. The

simulations were performed using the gadget-3 package: massively parallel code for N-body sim-

ulations [Springel, 2005]. gadget works by splitting the volume of the simulation into smaller

sub-volumes, with the size of the sub-volume dependent on the density at that point (smaller vol-

ume for more dense regions and vice-versa). Gravitational forces are then computed by multipole

expansion between the individual particles in each sub-volume and between the sub-volumes them-

selves. Snapshots were taken every 0.1 Gya, or equivalently every ≈ 0.07 τdyn. The gravitational

force softening (the separation at which we neglect the gravitational interaction between particles

to prevent singularities) follows the scheme of [Dehnen, 2001] with ε = ε1
√
Mparticle/1010M� and

a choice of ε1 = 32 kpc. We take Mhalo particle = 106M� and Mbulge particle = 6 × 104M�, giving a

dark matter softening length of εdm = 0.32 kpc and bulge softening length of εbulge = 0.078 kpc.

We use a flat cosmology with ΩM = 0.3, ΩΛ = 0.7 and H0 = 0.7 kms−1kpc−1. Virial quantities of

the galaxies are defined in terms of the corresponding virial radius R200c, the radius of a body that

encloses an average density of 200ρcrit, where ρcrit = 3H2

8πG
≈ 10−26 kg/m3 is the mean density of a

flat universe at the present.

5The simulations were carried out on the Darwin Supercomputer of the HPCS, Cambridge.
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3.1 Simulations 3 METHODS

3.1.2 The galaxies

In this work we used four galaxies, each consisting of a large dark matter halo and a stellar bulge,

with both components of [Hernquist, 1990] profile

ρ(r) =
M

2π

a

r(r + a)3
(3.2)

where a is a constant scale length. The galaxies are named G100, G030, G010 and G005 and their

key properties are listed in Table 1. The galaxies were constructed using the MakeNewDisk

code, described in [Springel et al., 2005], and were evolved in isolation for 5 Gya to confirm the

stability of their profile. Snapshots were taken at 0 Gya, 2.5 Gya and 5 Gya and histogram plots

of the density of the galaxies were compared to the relevant Hernquist profiles.

Property G100 G030 G010 G005

Halo

Particles 106 3× 105 105 5× 104

M/M� 1012 3× 1011 1011 5× 1010

R200/kpc 206 138 96 76

a/kpc 40.0 26.8 18.5 14.7

Bulge

Particles 5× 105 1.5× 105 16667 3333

M/M� 3× 1010 9× 109 109 2× 108

R200/kpc 1 0.67 0.46 0.37

a/kpc 1.0 0.67 0.46 0.37

Table 1: Properties of the galaxies used. Particles is the total number of particles used for that
component of the galaxy in our simulations. M is the mass of that component, measured in solar masses
M�. R200 is the virial radius of the component. a is the constant scale length for the Hernquist profile of
the component

.

3.1.3 Parameter set

The parameter set used is displayed in Table 2. In each run the satellite starts with its centre of

mass at the virial radius of the host. Mass ratios were chosen to be Msat/Mhost = 0.3, 0.1 and 0.05.

This reflects the range used in [Boylan-Kolchin et al., 2008] as well as the supposed domain of
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3 METHODS 3.1 Simulations

credibility of (3.1). Moreover, the range covers the most dynamically interesing scenarios. A priori

estimates of merging timescales for galaxy pairs with a mass ratio much less than 1:20 often exceed

a Hubble time, while for major mergers (Msat/Mhost > 0.3) they are closer to a dynamical time.

Further still, analysis of cosmological simulations have shown that almost all galaxy mergers have

Msat/Mhost ∈ [0.01, 0.3] [Bertone and Conselice, 2009].

The initial trajectories of the galaxies are Keplerian ellipses specified by (e, rmin). In this work we

used eccentricities e ∈ [0, 0.95], a wide range of orbits, covering the vast majority of the distribution

seen in dark matter simulations [Zentner et al., 2005], [Benson, 2005]. Once e is specified, we

chose rmin to keep the initial value of rc(E)/rvir (a parametrisation of the orbital energy) in a

sensible range, where rc(E) is defined to be the radius of a circular orbit with the same energy

as the satellite. In this case, a sensible range for rc(E)/rvir is the restriction that it not be

much greater than unity. If it is, the satellite may retain enough orbital angular momentum

after its first pericentric passage to then travel many times the host’s virial radius before its

second pericentric passage. This would cause infeasibly long simulation times. The calculation

of rc(E) was carried out using the Hernquist potential rather than the two body approximation.

The mass (and therefore the potential) of the host’s bulge was neglected in the calculation since

Mbulge/Mhalo = 0.03� 1 and the resulting expression is

rc(k) = −k
2
− a+

1

2

√
k(k − 4a) (3.3)

with k = GM
2E

and a the scale length of the host’s halo.

Run Msat/Mhost e rmin (kpc) Run Msat/Mhost e rmin (kpc)

30:95 0.3 0.95 20 10:80 0.1 0.80 40

30:85 0.3 0.85 20 10:75 0.1 0.75 50

30:60 0.3 0.60 55 10:70 0.1 0.70 55

30:40 0.3 0.40 89 10:65 0.1 0.65 50

30:0 0.3 0 206 05:95 0.05 0.95 20

10:95 0.1 0.95 20 05:85 0.05 0.85 20

10:90 0.1 0.90 15 05:75 0.05 0.75 30

10:85 0.1 0.85 20

Table 2: Parameter set for simulations. The initial trajectory of the satellite is a Keplerian ellipse,
specified by orbital eccentricity e and pericentric distance rmin.

7



3.2 Analysis 3 METHODS

3.2 Analysis

3.2.1 Defining a merger

We define the satellite galaxy to have merged with the host when its angular momentum relative

to the host’s COM diminishes to below 1% of its initial value and does not surpass this value again.

More specifically, we consider the merger event to have happened at time t0 if, ∀ t > t0,

J(t) ≡ µ [(rsat − rhost)× (vsat − vhost)] <
1

100
J(0) (3.4)

where the positions and velocitites are of the respective centres of mass and µ = MsatMhost

Msat+Mhost
. Note

that it is possible that the satellite’s angular momentum drops below this threshold, but then

exceeds it again at some later time. In such cases it can be difficult to distinguish between numerical

noise and the satellite genuinely retaining its identity. With this in mind, we define the error in

a merging timescale measurement to be the difference between the current measurement and the

time when J(t) last dropped below 1
100
J(0), provided that the satellite has had J(t) ≥ 1

100
J(0) in

the interim, otherwise the error will be 0.1 Gya.

Our defintion is a departure from [Boylan-Kolchin et al., 2008], where a merging event happens

when the satellite loses all of its specific angular momentum j = rvt relative to the host. According

to the definition in [Boylan-Kolchin et al., 2008], the satellite will have merged with the host either

when its orbit has decayed totally or when its mass has been stripped and has assumed an average

velocity profile that is the same as the host’s. Therefore it is possible for a satellite to have merged

by our definition but not by the standard of [Boylan-Kolchin et al., 2008]: for instance it could

have lost over 99% of its mass but only some of its specific angular momentum. According to the

definition in [Boylan-Kolchin et al., 2008] it is possible to have only a very small section of the

satellite remaining and orbiting well within the virial radius of the host, but for the merger to have

not taken place. Physical intuition tells us that the galaxies have merged in these cases because

the remnant of the satellite is tightly bound, close to the centre of the host and the satellite has

lost much of its identity. Our definition reflects this by neglecting these very small remnants. This

notion is supported by the plots in section 4.2, which show that our merging times are closely

correlated with the total accretion of the satellite mass to the host.

3.2.2 Performing the analysis

In order to identify the satellite during the simulation, we used the package Subfind that is

described in [Springel et al., 2001]. Subfind reads the gadget output, “identifies locally over-

dense, self-bound particle groups” and records their positions, velocities and masses in another set

of files for each timestep. Subfind works by first applying a friends of friends (FOF) algorithm

8



3 METHODS 3.2 Analysis

[Davis et al., 1985] to the simulation volume. The FOF algorithm groups the particles by their

separation based on a specified linking length b as follows: Take two particles P and Q each in

a group (of one or more particles), if the separation between them is less than b then the groups

containing P and Q are combined. This process is carried out iteratively until all the particles

closer than b are grouped accordingly (but there are no groups). The simulation volume is now

subdivided regions of extent that depends on their density. Subfind then defines a density field

for the simulation by interpolating the densities between the positions of each particle. Regions

of the simulations that are locally over-dense with respect to the interpolated density field are

considered as candidate halos. The particles in the candidate halos are checked for boundedness

and the unbound particles are discarded. Finally, the energies of the remaining particles in the

candidate halo are examined and those that are mutually self-bound and larger than a predeter-

mined minimum resolution are catalogued as a sub-halos. For our simulations we specified the FOF

linking length as 0.16 kpc and the minimum resolution as 32 particles, meaning that the minimum

mass of a substructure in our simulation is set at 1.92× 106M�. We then collated the information

from the Subfind output and calculated the properties of the galaxies, such as relative angular

momentum and rc(E), for each timestep of the simulation. The short piece of C code that records

the merging timescale and measurement error for each simulation is provided in the appendix.

All plots in this work were made using the epslatex terminal for gnuplot, a command-line driven

plotting utility.
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4 Results
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Figure 1: Run 30:85. Lengths are in kpc. Plots are of projections of the simulation onto the plane
of motion. Halo particles are plotted in red for the host and cyan for the satellite. Bulge particles are
plotted in yellow for the host and pink for the sattelite. Satellite particles are plotted five times more
frequently than for the host. Top left shows the intial condition of the simulation, with the satellite’s
centre of mass at the virial radius of the host. Top right is the first pericentric passage at 0.7 Gya; notice
the distortion in the halo of the sattelite. Bottom left is the second pericentric passage at 3.6 Gya, the
satellite halo is almost completely stripped but the bulge remains intact. Bottom right is at 5 Gya. By
now the system has merged and the satellite has been completely destroyed.

4.1 Merging Times

4.1.1 From the virial radius

Table 3 shows the predicted and recorded merging times for each simulation along with the initial

value of the parameter rc(E)/rvir, calculated from the Subfind output. The initial values for

rc(E)/rvir are often unexpected, particularly for 30:95 (which is why the estimate of τmerge is so

grossly incorrect). The values for runs 10:95 and 05:95 are missing altogether because Subfind

calculated 0 < GMhost

2E
< 4a in these cases. That is, the velocity of the satellite was seen to be so

great that it was unbound from the host, so there is no circular orbit of that energy.6 The problem

6As an aside, had we used the two body approximation here with a ∼ 1/r force law, then we may not have
encounter such issues because the singularity at r = 0 can always bind the satellite provided it passes close enough
to the origin.
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4 RESULTS 4.1 Merging Times

is that Subfind reads the velocity of the satellite as being much too large at the beginning of

the simulation, affecting all of the runs but most severely for the trajectories of high eccentricity.

The measurements become more stable and closer to what we would expect as the simulation

progresses.7

The predicted values for τmerge are significantly larger than the measured values. Even when we

allow for a 10% shortening of the prediction for the inclusion of the baryonic component (see

[Boylan-Kolchin et al., 2008]), with a RMS error of 5.3 Gya the predictions are contrary to our

measurements. Though in spite of the numerical differences, they agree in two main aspects.

Firstly, if one measurement is larger/smaller than another then the corresponding predictions are

almost always larger/smaller respectively. Secondly, merging times broadly increase with increases

in circularity and are inversely related to the mass ratio.

Figure 2 and Figure 3 show plots of the angular momentum of the satellites and the centre of mass

separation of the galaxies in runs with Msat/Mhost = 0.3, while Figure 4 and Figure 5 show the

same for runs 10:90, 10:80, 10:75 and 10:70. Note that pericentric passages generally coincide with

sharp losses in angular momentum, especially for the smaller satellite and higher eccentricities.

Conversely, the larger satellite and lower eccentricity runs exhibit a more constant loss in angular

momentum. In addition, the smaller satellites have remnants that orbit the centre of mass of

the host long after their halo has diminished (see Figure 10). Observe from Figure 3 that the

satellite orbits do not vary markedly in circularity over time. This is concurrent with the idea that

dynamical friction has no net effect on the circularity of a satellite’s orbit.

In each of the plots, the plotted lines cease at different times. A line stops when Subfind cannot

identify two distinct self-bound bodies, either because the satellite’s extent has passes below the

minimum resolution of Subfind (32 particles) or because the simulation has ended.

7This points a finger at Subfind rather than Gadget, but this is aided by the fact that the velocities of the
satellites reduce anyway due to dynamical friction. It is likely that the problem lies in the way that Subfind
uses halo data from previous snapshots as initial estimates for iterative calculations, so inaccuracies are more likely
towards the beginning of the simulation, but a detailed discussion of Subfind is outside of the scope of this project.
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4.1 Merging Times 4 RESULTS

Run (rc(E0)/rvir) τmerge (τmerge)B-K Abs. Error % Error

30:95 52 4.2± 0.1 55 51 1200%

30:85 0.82 2.7± 0.1 2.9 0.2 7.4%

30:60 0.86 4.7± 0.1 6.0 1.3 28%

30:40 0.97 6.5± 0.1 8.6 2.1 32%

30:0 1.2 8.4± 0.1 10 1.6 19%

10:95 — 12± 0.1 — — —

10:90 0.99 2.5± 0.1 6.7 4.2 170%

10:85 0.90 6.2± 0.1 7.3 1.1 18%

10:80 1.6 4.6± 0.1 14 9.4 200%

10:75 1.6 5.3± 0.1 15 9.7 180%

10:70 1.4 5.3± 0.1 15 9.7 180%

10:65 1.0 12.3± 0.1 14 1.7 14%

05:95 — 29.8± 0.1 — — —

05:85 0.92 10.4± 1.0 14 3.6 35%

05:75 0.74 13.7± 1.2 18 4.3 31%

Table 3: Output of simulations. τmerge is the measured merging time in Gya. (τmerge)B-K is the merging
time predicted by (3.1) in Gya, reduced by 10% to account for baryons. Abs. Error is the absolute error
in the prediction against our measurements, in Gya, and % Error is this error as a percentage of the
measured merging time.
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Figure 2: Msat/Mhost = 0.3: Angular momentum against time, normalized such that the t = 0 values
are unity.
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Figure 3: Msat/Mhost = 0.3: centre of mass separation between the galaxies ∆ against time, normalized
such that the t = 0 values are unity.
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Figure 4: Msat/Mhost = 0.1: Angular momentum against time, normalized such that the t = 0 values
are unity.
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Figure 5: Msat/Mhost = 0.1: centre of mass separation between the galaxies ∆ against time, normalized
such that the t = 0 values are unity.
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4.1.2 From other radii

For each of the runs the predicted merging time given by (3.1) was calculated and recorded at

each snapshot. Table 4 shows the root mean squared (RMS) error of the prediction (reduced by

10% to account for baryons) against the recorded merging time. When calculating these values,

two considerations were made. Firstly, the simulations with e = 0.95 were rejected because of

the numerical issues. Secondly, the error was calculated only for ingoing trajectories (for reducing

centre of mass separation). Equation (3.1) is not sensitive to the parity of the velocity/angular

momentum of the satellite, so portions of the simulation where the galaxies are moving away from

each other are not expected to generate sensible merging time predictions. Figures 6, 7 and 8 show

the measured merging time for ingoing trajectories and the predictions for those snapshots.

We see large RMS errors for Msat/Mhost < 0.3 in Table 4. In general, the errors increase for a

decrease in mass ratio. Figure 8 gives an instance of this, where the prediction is ≈ 4 Gya too large

before the first pericentric passage. Notice that in all of the plots in this section, the prediction

becomes more accurate (in terms of the absolute error) for smaller radii. While the predictions for

Msat/Mhost < 0.3 are poor, and there are often large disagreements at multiple radii (see Figure 8),

the predictions for Msat/Mhost = 0.3 are impressively robust. Furthermore, as displayed in Figures

6 and 7, the error is roughly constant throughout each run with Msat/Mhost = 0.3.

Run RMS Run RMS Run RMS

30:95 — 10:95 — 10:70 21.6

30:85 0.7 10:90 4.5 10:65 4.6

30:60 1.7 10:85 4.6 05:95 —

30:40 1.5 10:80 9.4 05:85 25.9

30:0 1.7 10:75 10.7 05:75 19.2

Table 4: RMS (root mean squared error in Gya) between prediction and measurement over all radii,
ingoing trajectories only. We reduced τmerge by 10% to account for the baryonic components.
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Figure 6: 30:60: Predicted and measured merging times against normalised centre of mass separation
between the galaxies ∆/rvir. We reduced τmerge by 10% to account for the baryonic components.
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Figure 7: 30:40: Predicted and measured merging times against normalised centre of mass separation
between the galaxies ∆/rvir. We reduced τmerge by 10% to account for the baryonic components.
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Figure 8: 10:90: Predicted and measured merging times against normalised centre of mass separation
between the galaxies ∆/rvir. We reduced τmerge by 10% to account for the baryonic components.
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4.2 Mass stripping

Figure 9 and Figure 10 show how the mass of the satellite changes over time in runs 30:95 and

05:75 respectively. In all cases, the halo of the satellite is initially stripped much faster than the

bulge and more mass is stripped when the satellite is closer to the centre of the host that at other

times. In the plots shown the mass of the satellite seems to increase immediately after a pericentric

passage. This is a numerical artefact and not a physical phenomenon — the satellite is not believed

to gain an appreciable amount of mass during an encounter.

There are two distinct regimes of stellar accretion during the merger. In the early stages of the

merger baryonic matter is accreted to the host rather slowly. However, as the system evolves and

the halo is stripped to ≈ 10% of its initial value, the stellar bulge is accreted more quickly. In

all of the runs the initial rate of stellar accretion is uniformly small and ≈ 10% is lost during the

early regime, but the rate of mass loss during the late regime depends on the mass of the satellite.

For the Msat/Mhost = 0.3 satellites the loss of the stellar component in the late regime is almost

immediate, but for less massive satellites it is more gradual.
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Figure 9: Msat/Mhost = 0.3, e = 0.95. Halo and bulge mass of the satellite against time with centre of
mass separation between the galaxies ∆/∆0 over-plotted. All plots are normalised such that the t = 0
values are unity. Note the correlation between pericentric passages and mass stripping.
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Figure 10: Msat/Mhost = 0.05, e = 0.75. Halo and bulge mass of the satellite against time with centre
of mass separation between the galaxies ∆/∆0 over-plotted. All plots are normalised such that the t = 0
values are unity. Note the correlation between pericentric passages and mass stripping.
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5 Discussion

The features outlined in 4 characterise the interplay between dynamical friction and tidal forces

during the mergers. The dynamical friction force on a satellite is proportional to its mass, so it

is more relevant in the Msat/Mhost = 0.3 systems than in the others. For eccentric trajectories

the satellite will pass close to the centre of the host and tidal effects strip mass to produce the

step-like losses in J . On the other hand, for more circular trajectories this is less so and the

continual drag of dynamical friction reduces angular momentum more smoothly. Furthermore,

dynamical friction causes the satellite’s orbit to decay to the centre of the host, where tidal forces

are most prominent. Simultaneously, tidal forces strip mass that in turn increases the dynamical

friction force on the satellite [Fujii et al., 2006]. The discussions in this section will be centred on

the relationship between these processes.

5.1 Merging times

5.1.1 Some considerations

Due to the issues with Subfind that occur when analysing the initial stages of the simulations,

deductions from Table 3 are not particularly reliable. This can be seen by comparison with Ta-

ble 4, where the prediction provided by (3.1) is more consistent with our simulations for the

Msat/Mhost = 0.1 mergers than for the Msat/Mhost = 0.05 runs. On the other hand, the corre-

sponding initial predictions for Msat/Mhost = 0.1 in Table 3 are often wildly imprecise and much

further from our measurements than the Msat/Mhost = 0.05 runs. Again, this is because of the

spurious measurements of the velocities of the satellites at the beginning of the simulations. To

inhibit the effect of such anomalies we will focus our attention on the consistency of 3.1 when

analysed at various radii.

It should be noted that one would expect systematically longer merging times from (3.1) than

we have measured in this work. As mentioned in section 3.2.1, the definition of a merger in

[Boylan-Kolchin et al., 2008] has a less direct dependence on the loss of mass of the satellite than

the definition (3.4). Tidal stripping gives a more immediate contribution to the reduction of J

than it does to j = J/µ that is used in [Boylan-Kolchin et al., 2008]. This is because for tidal

stripping to cause a reduction in j, the velocities of stripped particles must be assimilated into the

velocity profile of the host through encounters with host particles — this assimilation acts over a

longer time scale to the stripping itself and is necessarily preceded it. Hence, in the presence of

tidal stripping, we expect J to decay faster than j.

With the difference in definition it is difficult to speak conclusively about the accuracy of pre-

dictions based upon (3.1). The amount to which this difference in definition contributes to the
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disagreement in merging times is difficult to quantify without further measurement. In spite of this,

we have gained some insight into the consistency of (3.1) when applied to starting radii r < rvir.

The key aspect is that roughly constant error along ingoing trajectories in Figures 6, 7 and 8

indicate that (3.1) is indeed applicable to radii r < rvir. Further, the consistency remains intact

for r � rvir, contrary to the suggestions in [Boylan-Kolchin et al., 2008]. Inferences from this must

be made tentatively, because the exact mechanisms by which (3.1) differs from our measurements

are yet to be established or quantified. It is argued below that tidal stripping is the main source

of discrepancy, but we reiterate, until this is tested directly one must be careful about drawing

conclusions.

5.1.2 The disagreement between prediction and simulation

We believe that the source of disagreement between the predictions based on (3.1) and our mea-

surements is due to tidal stripping. The first point in support of this is the roughly constant

disagreement between the predicted and measured merging times along ingoing trajectories. This

indicates that the discrepancy between the prediction and our measurements is systematic. Fur-

ther, as explained above, the definition used in this work will give systematically shorter merging

times than (3.1) due to tidal stripping. This lends itself well to the idea that tidal stripping causes

the discrepancy via the difference in definitions.

This notion is compounded by our data. Observe from Figures 6, 7 and 8 that the largest discrep-

ancies appear along the initial ingoing trajectory. Relate this to Figures 9 and 10 and see that

the radii at which the rate of mass loss is greatest are the same radii for which the discrepancy

is greatest. Moreover, the simulations for which the prediction is closest to the measured merging

time are those for which tidal stripping is least pertinent to the satellite’s reduction in J relative

to dynamical friction. That is, for Msat/Mhost = 0.3 and in particular for runs in which G030 is on

trajectories of low eccentricity. It is for these systems that reductions in j, relative to reductions

in µ, are most relevant to reductions in J . This is because, from the trajectories considered, these

are the ones on which µ varies the slowest. Consequently it is for these systems that the definition

of merger time based upon J = µj (3.4) is closest to that of [Boylan-Kolchin et al., 2008].

5.2 Mass loss

In section 4.2 we see that there are two distinct regimes of stellar accretion during the merger.

The bulge of the satellite remains / 10% stripped until the halo is stripped by more than 90%,

at which point the stellar accretion is quickened significantly. Figures 9 and 10 suggest that the

rate at which the stellar component of the satellite is stripped in this second stage is related to

the initial mass and trajectory of the satellite.
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The dark matter halo of the satellite, being more diffuse than the stellar component, is less self-

bound gravitationally per unit mass. This implies that the tidal radius of the halo is smaller than

the bulge, when considered as a proportion of their respective virial radii, and so the halo loses

mass to tidal effects more readily. In particular, note that the majority of the dark matter of the

satellite is accreted by its first pericentric passage. Additionally, the bulge, being more self-bound

than the halo, is more resistant to increases in its internal kinetic energy and the velocity dispersion

of its constituents. These are the key reasons why the halo of the satellite is stripped prior to the

bulge.

The gravitational potential due to the satellite is vastly dominated by the contribution of the dark

matter component. This has a stabilizing effect on the stellar bulge, that resides at the minimum

of the potential of the halo, making the bulge even more resistant to tidal forces. When the halo is

stripped this is no longer the case and the stellar mass of the satellite is accreted. The rate of this

accretion is related to the initial mass and trajectory of the satellite. Tidal forces are strongest

near the centre of the host, within its scale length of 40 kpc = 0.19 rvir, and so satellites that have

remnants which orbit mostly outside this sphere lose stellar mass less rapidly than those that have

orbits mostly interior to it. Note that, outside a sphere of radius 0.19 rvir about the centre of the

host, tidal forces on the satellite decrease in strength ∼ 1/r3 for increases in separation, so we

proximity to this sphere is relevant to the rate of mass stripping.

The separation of the satellite remnant from the centre of the host in the late stages of the merger

is determined by its specific orbital angular momentum. Hence the dependence on initial trajectory

and mass. More massive satellites will lose orbital angular momentum more quickly and so, ceteris

paribus, their corresponding remnants will retain less angular momentum and reside closer to the

centre of the host. Further, the mass of the stellar component of the galaxies scales with total

mass, so satellite’s with larger initial mass will have remnants that are more massive and that

lose orbital angular momentum faster due to dynamical friction. Lastly, the amount of orbital

angular momentum retained by the remnant is related to the orbital angular momentum that it

began with. Therefore eccentric orbits will have remnants that have more specific orbital angular

momentum than for high circularity orbits. However, the effect of this on the rate of stripping

is not entirely straightforward, because the trajectory of the satellite determines the pericentric

distance of the orbit, which in turn is relevant to stripping.
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6 Conclusions

In this work we ran 15 N-body simulations of dry, binary mergers between galaxies consisting of

Hernquist profile dark matter halo and Hernquist profile stellar bulge. We used the N-body code

gadget [Springel, 2005] to run the simulations and the related package Subfind to identify the

galaxies at each snapshot. We introduced our own definition of the merging time and, against the

data gathered from our simulations, we tested the fitting formula for merging times (3.1) (reduced

by 10% to account for the baryonic component) from [Boylan-Kolchin et al., 2008]. We compared

(3.1) against our merging times measured from when the satellite crosses the virial radius of the

host and for starting radii r < rvir. In addition we examined the rate of mass accretion to the host

at different points in the merger.

Our results show that (3.1) consistently overestimates the merging times measured using the defi-

nition (3.4). These overestimations are greatest at the beginning of the merger, roughly constant

along each ingoing trajectory of the satellite and generally decrease after each pericentric passage.

The predictions of [Boylan-Kolchin et al., 2008] are most accurate for the systems with mass ratio

Msat/Mhost = 0.3 and in general apply consistently well across all radii for this mass ratio. The

predictions perform substantially less well for the systems with Msat/Mhost < 0.3 and worst for

Msat/Mhost = 0.05 when averaged over all snapshots where the galaxies are moving together. From

our examination of the loss of mass of the satellite we see that the majority of the dark matter

of the satellite is accreted to the host after the first pericentric passage. Further, we find that an

appreciable amount of stellar mass (> 10%) is not stripped from the satellite until after the halo of

the satellite is almost completely (≈ 90%) removed. When the stellar mass is eventually accreted,

it is at a rate dependent on the initial mass and trajectory of the satellite. From this emerge two

distinct regimes of stellar accretion from the satellite to the host: the first gradual, while the halo

remains above 90% of its initial mass, the second more rapid and sometimes almost immediate.

We deduce that tidal stripping is the main cause for the overestimation made by (3.1) when

considered against our measurements. Essentially, we argue that the predictions of (3.1) are inap-

propriate for our definition of merging time (3.4). This is because our definition is more sensitive

to tidal stripping of mass from the satellite than the definition in [Boylan-Kolchin et al., 2008].

Additionally, we find that the variation in rate of stellar mass accretion between the systems con-

sidered is due to variations in the initial mass trajectory of the satellite.

Our conclusions regarding (3.1) are limited by two considerations. Firstly, our analysis was jaded

by the erratic behaviour of Subfind, which gave unexpected values for the velocity of the satel-

lite in the initial stages of the simulations. This is somewhat mitigated by the roughly constant

discrepancy between prediction and results across radii, indicating that Subfind only has issues
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with the initial portion of the simulations. Nevertheless, this is a potential source of error in our

results. Secondly, the difference in definition between this work and [Boylan-Kolchin et al., 2008]

could be very significant. In the time available we were not able to quantify this difference, so

we cannot make serious quantitative judgements of the accuracy of (3.1). We do, however, come

to some qualitative conclusions about the consistency of (3.1) when applied to radii r < rvir. In

particular, we conclude that merging time predictions by (3.1) are robust for r < rvir. We hope

that the findings of this work will useful for semi-analytic models of structure formation and for

observations of merging pairs.
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7 Suggestions for further work

In order to assess the accuracy of (3.1) rigorously, the discrepancy between the definition (3.4) and

the one in [Boylan-Kolchin et al., 2008] needs to be quantified. An approach to this problem could

involve isolating the variation of either µ or j over a merger and relating these to the variation

in J = µj. Doing this would yield quantitative insight into the systematic difference between

the definitions. In turn, one would be able to use the data presented here to check the accuracy

of (3.1) more thoroughly. With the output from our simulations and the data presented here,

this is an attainable goal. However, we were not able to perform the requisite analysis in time

for submission. A second, more intensive approach is to fit a formula similar to (??) or (2.5) to

our data and then compare this with (3.1). This approach is comprehensive and would generate

predictions with respect to the definition (3.4), but it is less direct than the first approach and

would not tell us why the observed discrepancies have arisen.

An additional direction in which this work could be extended is to further explore the indicators

of tidal stripping. If a satellite is larger than its tidal radius then it will experience mass loss in

the presence of gravitational tidal forces. The tidal radius of a body is related to the contours of

zero force throughout the system. We believe that it would be interesting to investigate whether

the area bounded by the contours of zero force that enclose the satellite at a given time is related

to the rate of stripping. For instance, we would expect a reduction in the area bounded by these

contours to be related to reduction in mass of the satellite.
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Appendix

Measuring merging times

Below is a short code that I wrote in C to calculate the merging time and error. It is part of a

larger piece that loops over all Subfind output and calculates various properties of the galaxies

for each snapshot. The integer i is the snapshot number, J is the relative angular momentum of

the satellite about the centre of mass of the host and JInitial is its t = 0 value.

1 double J, JInitial , Tmerge , error;

2 int q, p, z, numsnapsup , numsnapsdown;

3

4 q = 0;

5 p = 0;

6 z = 0;

7 numsnapsdown = 0;

8 numsnapsup = 0;

9 Tmerge = 0.0;

10 error = 0.0;

11

12 if (J < JInitial *0.01)

13 {

14 if (z>0) numsnapsup = q;

15 z++;

16 if (p == 0)

17 {

18 Tmerge = i*0.1;

19 error = 0.1*( numsnapsup + numsnapsdown);

20 }

21 p++;

22 q = 0;

23 } else {

24 if (!(p==0)) numsnapsdown = p;

25 p = 0;

26 Tmerge = 0.0;

27 /* to indicate that the merger hasn’t yet happened */

28 q++;

29 }
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